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We consider the effect of the finite size and ready polarizability of the deuteron on the 
probability of transmutations involving the capture of the neutron. These have as a conse­
quence that the Coulomb repulsion of the nucleus is less effective than for alpha-particles or 
protons, and that the corresponding transmutation functions increase less rapidly with deuteron 
energy. We treat the collision by the adiabatic approximation and obtain quantitative results 
for this energy dependence which are in good agreement with experiment. 

MANY elements can be rendered radioactive 
by deuteron bombardment, the reaction 

involving the capture of a neutron and the libera­
tion of. a proton: 

nA™+W-*nA
m+1+W. (1) 

Four reactions of this type have been studied in 
detail by Lawrence, McMillan and Thornton.1 

The transmutation functions which are found in­
crease smoothly with deuteron energy, but the 
increase is far less rapid than we should expect on 
the basis of the familiar considerations of 
Gamow2 on the penetration of charged particles 
through the potential barrier of the nuclear 
Coulomb field. To account even roughly for the 
observations on this basis, we are forced to as­
sume that the Coulomb potential breaks down at 
very large distances (~ 1.5 X 10~12 cm for copper). 
The transmutation function is thus anomalous 
when compared to that for protons and alpha-
particles, and it is natural to associate this 
anomaly with the structure of the deuteron, 
particularly its low stability. We wish to show 
in this paper that when this is taken into account, 
it does in fact provide a satisfactory explanation 
of the experiments. 

For neutron capture to be possible the neutron 
must have an appreciable probability of coming 
within the range of the nuclear forces. But this 
condition can be satisfied even when the center 
of mass of the deuteron lies beyond the range of 
these forces. It is this possibility which leads to 
an explanation of the fact that even with such a 

1 Lawrence, McMillan and Thornton, preceding article. 
We are greatly indebted to the authors for the opportunity 
of seeing their experimental results, and for many helpful 
discussions. 

2 Gamow, Atomic Nuclei and Radioactivity (Oxford Uni­
versity Press, 1931). 

highly charged element as copper nuclear trans­
mutations can occur for deuteron energies of the 
order of 2 MV. 

The quantitative treatment of the correspond­
ing collision problem is complicated, not only by 
our ignorance of the detailed forces involved, but 
by the complete inapplicability of the Born ap­
proximation. For the velocity of the deuteron is 
not large compared to the internal velocity of 
proton and neutron; the effective time of collision 
of the deuteron is long compared to its period. 
We have thus to use the adiabatic approximation: 
the relative motion of proton and neutron is ap­
proximately given by the solution of the wave 
equation when the distance of the center of mass 
of the deuteron from the nucleus is held fixed; 
the center of mass moves in an effective potential 
which is the energy S(X) of the relative motion; 
and the perturbation which induces the inelastic 
impacts of the transmutation is the term in the 
kinetic energy neglected in this zeroth approxi­
mation. In fact the cross section for the transmu­
tation is then given, with a proper normalization 
of the wave functions, by 

XlW/AMAx+W-I-ZiX^ix, X)\\ (2) 

Here p and n are the coordinates of proton and 
neutron, x—p — n their relative coordinates, X 
the coordinates of the center of mass of deuteron 
measured from the nucleus as origin. Further \[/i 
is the approximate adiabatic wave function for 
the initial state (normalized to unit flux); \f/f the 
wave function for the final state, in which the 
neutron is captured and the proton is flying off 
with a considerable kinetic energy; and W, I, 2M 
are kinetic energy, binding energy and mass of 
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the deuteron. We wish to evaluate the de­
pendence of this cross section on the energy of 
the deuteron, insofar as this can be done without 
a detailed knowledge of the structure of the 
nucleus and the nature of the nuclear forces. 

The reactions (1) are highly exothermic, and 
we may therefore neglect the dependence of the 
final wave function for the proton on the deuteron 
energy; except in the immediate neighborhood of 
the nucleus we can take for the final wave func­
tion of the proton a plane wave. Further, the 
final wave function for the neutron will vanish 
except in the immediate neighborhood of the 
nucleus. Since the neutron is far more stably 
bound in the nucleus than in the deuteron, it is 
reasonable to neglect the finite extension of the 
corresponding wave function. The effect of this 
neglect will be to make the value of the binding 
energy of the deuteron which best fits the ex­
perimental curves somewhat lower than the true 
value, but the error should be small, especially 
for an atomic number as high as that of copper. 
We shall take then 

rf,f~eilh<*ME)hn(n), (3) 

except for very small values of p. Here E is the 
energy imparted to the proton by the dis­
integration. 

The essential energy dependence of a is deter­
mined by the form of \pi. The adiabatic ap­
proximation gives 

fi = u(x,X)<p(X), (4) 

where u(x> X) is the wave function for the rela­
tive coordinates x, when the center of mass X is 
fixed, and <p(X) is the wave function for the mo-

f(a)=cos-l(a)x>~(a(l-a))^ 

tion of the center of mass. If Vo be the potential 
between neutron and proton, and VN the nuclear 
potential, then these functions are determined by 
the wave equations 

{h*/MAx+&(X)-Vo(x)-VN(x, X)}u = 0, (5) 

{h2/4:MAx+W--I-Z(X)}<p = 0. (6) 

According to the familiar arguments of Wigner, 
Vo is given by an extremely narrow and deep 
trough, and is equivalent, as Bethe and Peierls3 

have observed, to the boundary condition for 

d\nu/dx)z^=~{MI)y%. (7) 

For VN we shall take the Coulomb repulsion of 
the proton, and neglect the specifically nuclear 
forces in the immediate neighborhood of the 
nucleus; for these the adiabatic approximation 
can hardly be valid, and they could have a sen­
sible effect on the transmutation function only if 
resonance occurred; the experimental curves 
afford no evidence for this. 

According to (3) we need consider u only for 
n=0, x= 2X. If we now determine u, 8 and <p by 
the Wentzel-Kramers-Brillouin method, we find, 
with sufficient approximation, 

r 2X(WI)* /Ze2 \) 
u(2X, X)=a(X) exp 01 1 ) 

I hv \XI ) \ 
&(X) = ~I+Ze2/X (8) 

b(W, X) f 2Ze2 /XW\ } 
<P(X) = exp / ( ) . 

v I hv \Ze2/\ 

Here Z is the nuclear charge, v the deuteron 
velocity, W= Mv2 the deuteron energy, and the 
functions / and 6 are defined by 

3 Bethe and Peierls, Proc. Roy. Soc. A148, 146 (1935). 
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Further a(X), b(W, X) are slowly varying func­
tions. Fa r from the turning points Xi-=Ze2/2I, 
X2 = Ze2/W, they are given by 

a(X)= (I-Ze*/2X)~i; b(W, X)= (Ze2/X- W)~K 

Since, as we shall see, the values of X which 
contribute essentially to the matr ix integrals for a 
vary little with W, the contribution of a and b 
to the t ransmutat ion function will be neglected. 

We can thus write 

h(2X,X)^l/v 

where 

f 2Ze2/M\? /W IX\) 

F(q, y)=ye(l/y~l)+q-if(qy). 

(10) 

(11) 

Regarded as a function of X, F has a rather 
sharp minimum. The position of this minimum 
varies little with deuteron energy in the range 
1.5 MV to 3 MV, and lies roughly a t Ze2/2I. 
The breadth of the corresponding maximum of 
^i(2X, X) decreases slowly with W, but since 
this breadth is of the same order as the wave­
length h/(2ME)* of the proton wave function, 
this variation will affect the magnitude of the 
matrix integral very little. The effect of the varia­
tion of a and b and of the logarithmic derivatives 
of u and <j> which appear in the integrals for a 
could in principle be taken into account by ob­
taining accurate solutions of the wave equations 
(5), (6); bu t without a detailed knowledge of the 
energy of the proton £ , and the form of the final 
neutron wave function, such refinements would 
be illusory. Throughout the range I/2<W<2I, 
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the variation of a with W is given essentially by 

4Ze2/M\^ 1 
a^—^exp \ — 

v2 
(12) 

where F{W/I) is the minimum value of F(W/I, 
IX/Ze2). A plot of F(W/I) is given in Fig. 1. 

The form of the t ransmutat ion functions given 
by (12) still depends upon the value of / . This is 
known to be roughly 2 MV, and this value gives 
satisfactory agreement with the experimental 
curves of Lawrence, McMillan and Thornton. In 
Fig. 2 of their paper Eq. (12) is plotted for three 
values of / (1.5 MV, 2 MV, 2.4 MV) for the 
aluminum reaction. I t is seen t ha t the agreement 
with the experimental values is best for 1^2 
MV. The approximations in the theoretical t reat­
ment would tend to favor rather too low a value 
of the binding energy of the deuteron. 


